Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons
نویسندگان
چکیده
BACKGROUND Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of peripheral neuropathic pain. RESULTS Bath-applied glutamate robustly increased [Ca2+]i in 14.4 ± 2.6 cells per dorsal horn within a 440 x 330 um field-of-view, with an average time-to-peak of 27 s and decay of 112 s. Repeated application produced sequential responses of similar magnitude, indicating the absence of sensitization, desensitization or tachyphylaxis. Ca2+ transients were glutamate concentration-dependent with a Kd = 0.64 mM. Ca2+ responses predominantly occurred on neurons since: 1) Over 95% of glutamate-responsive cells did not label with the astrocyte marker, SR-101; 2) 62% of fura-2 AM loaded cells exhibited spontaneous action potentials; 3) 75% of cells that responded to locally-applied glutamate with a rise in [Ca2+]i also showed a significant increase in AP frequency upon a subsequent glutamate exposure; 4) In experiments using simultaneous on-cell recordings and Ca2+ imaging, glutamate elicited a Ca2+ response and an increase in AP frequency. AMPA/kainate (CNQX)- and AMPA (GYKI 52466)-selective receptor antagonists significantly attenuated glutamate-evoked increases in [Ca2+]i, while NMDA (AP-5), kainate (UBP-301) and class I mGluRs (AIDA) did not. Compared to sham controls, peripheral nerve injury significantly decreased mechanical paw withdrawal threshold and increased glutamate-evoked Ca2+ signals. CONCLUSIONS Bulk-loading fura-2 AM into spinal cord slices is a successful means for determining glutamate-evoked Ca2+ mobilization in naïve adult dorsal horn neurons. AMPA receptors mediate the majority of these responses. Peripheral neuropathic injury potentiates Ca2+ signaling in dorsal horn.
منابع مشابه
Peripheral nerve injury sensitizes neonatal dorsal horn neurons to tumor necrosis factor-α
BACKGROUND Little is known about whether peripheral nerve injury during the early postnatal period modulates synaptic efficacy in the immature superficial dorsal horn (SDH) of the spinal cord, or whether the neonatal SDH network is sensitive to the proinflammatory cytokine TNFalpha under neuropathic conditions. Thus we examined the effects of TNFalpha on synaptic transmission and intrinsic memb...
متن کاملPartial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord.
To clarify whether inhibitory transmission in the superficial dorsal horn of the spinal cord is reduced after peripheral nerve injury, we have studied synaptic transmission in lamina II neurons of an isolated adult rat spinal cord slice preparation after complete sciatic nerve transection (SNT), chronic constriction injury (CCI), or spared nerve injury (SNI). Fast excitatory transmission remain...
متن کاملSodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury
Peripheral nerve injury is known to up-regulate the expression of rapidly-repriming Nav1.3 sodium channel within first-order dorsal root ganglion neurons and second-order dorsal horn nociceptive neurons, but it is not known if pain-processing neurons higher along the neuraxis also undergo changes in sodium channel expression. In this study, we hypothesized that after peripheral nerve injury, th...
متن کاملHigh - voltage activated calcium current subtypes in mouse DRG neurons adapt in a 1 subpopulation - specific manner following nerve injury
Changes in ion channel function and expression are characteristic of neuropathic 12 pain. Voltage-gated calcium channels (VGCCs) are integral for neurotransmission and 13 membrane excitability, but relatively little is known about changes in their expression 14 following nerve injury. In this study, we investigate whether peripheral nerve ligation is 15 followed by changes in the density and pr...
متن کاملHigh-voltage-activated calcium current subtypes in mouse DRG neurons adapt in a subpopulation-specific manner after nerve injury.
Changes in ion channel function and expression are characteristic of neuropathic pain. Voltage-gated calcium channels (VGCCs) are integral for neurotransmission and membrane excitability, but relatively little is known about changes in their expression after nerve injury. In this study, we investigate whether peripheral nerve ligation is followed by changes in the density and proportion of high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012